Soil Carbon Sequestration Offset N2O and CH4 emissions in China's Croplands Yao HUANG^{1#+}, Wenjuan SUN¹, Wen ZHANG², Yongqiang YU³ ¹ Institute of Botany, Chinese Academy of Sciences, China, ² Institute of Atmospheric Institute, Chinese Academy of Sciences, China, China, ³ Institute of Atmospheric Physics, Chinese Academy of Sciences, China [#]Corresponding author: huangyao@ibcas.ac.cn [†]Presenter Cropland soils have been shown to emit nitrous oxide (N_2O) and methane (CH_4) into the atmosphere and to sequester carbon when field management is improved. However, the extent to which soil organic carbon (SOC) sequestration can help to offset N_2O and CH_4 emissions in China's croplands remains unclear. On the basis of model simulations from 1980 to 2009, we estimated SOC change rates, and N_2O and CH_4 emissions in China's croplands. Our estimates showed that SOC sequestration offset 21.4% in the 1980s and 29.4% of the N_2O and CH_4 emissions in the 2000s. The offset is more pronounced in upland cropping systems (28.5%–49.5%) than in rice-based cropping systems (16.2%–19.0%). This disproportionate offset is due not only to a large amount of CH_4 emissions during the rice growing season but also to N_2O emissions in both rice and off-rice upland crop seasons. Increasing carbon input in the upland cropping systems is expected to further offset N_2O and CH_4 emissions in China's croplands.