

Laboratory Simulation on Euv Photolysis of Naphthalene and Ammonia in H₂O ice

YU-JUNG CHEN¹, NUEVO MICHEL¹, WING H. IP¹, TAI-SONE YIH¹, C. Y. ROBERT WU², HOK-SUM FUNG³, SU-YU CHIANG³, YIN-YU LEE³,

JIN-MING CHEN³, CHEANYEH CHENG⁴, HSIANG-RONG TSAI⁴

¹Department of Physics, National Central University, Chung-Li, Taiwan, ROC.

 ² Space Sciences Center, University of Southern California, USA.
³National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC.
⁴ Department of Chemistry, Chung Yuan Christian University, Chun-Li, Taiwan, ROC.

Mixture icy samples at 15K were photo-irradiated by strong extreme ultraviolet (EUV) radiation in this work. The components of the ice mixture were the most common cosmic molecules H_2ONH_3 and $C_{10}H_8$. $C_{10}H_8$ is one of the polycyclic aromatic hydrocarbons (PAHs) which are gradually accepted as common molecules distribute over outer space.

we employed an ultra-high vacuum chamber equipped with a closed- cycle helium cryostat to simulate the environment of the space beyond the atmosphere. A Fourier-transform infrared (FTIR) spectrometer was mounted to detect what products were produced during EUV photolysis period and a quadrupole mass spectrometer (QMS) is used for particle desorption measurement during thawing period after EUV photolysis of ice mixture. The necessary intense simulation of solar radiation is provided by a synchrotron beam at National Synchrotron Radiation Research Center (NSRRC) in Hsinchu, Taiwan. After about 10²⁰ total photon dose, the mixture icy samples were warmed up under dynamic vacuum to room temperature, then the residues were removed from the substrate and analyzed by a high performance liquid chromatography (HPLC).

Evolution of species during photolysis period and interesting large molecules found in the residue will be presented.

Keywords: Mixed ices; photolysis; EUV; H₂O; NH₃; Naphthalene.

References

[1] M. P. Berstein, J. P. Dworkin, S. A. Sandford and L. J. Allamandola, Meteorit. Planet. Sci. **36**, 351 (2001).

[2] M. P. Bernstein, M. H. Moore, J. E. Elsila, S. A. Sandford, L. J. Allamandola and R. N. Zard. APJ. 582, L25 (2003).

*This work was supported by the National Science Council under grant #NSC94-2112- M008-004.