

Outer Planet Magnetospheres

FRAN BAGENAL

LASP, University of Colorado

Magnetospheres of the outer planets range from the giant magnetosphere of Jupiter to the mini-magnetosphere of Ganymede. This paper will present a brief comparison of the magnetospheres of the outer planets and summarize our understanding of their structures, plasma sources and dynamics.

Table 1: Properties of the Solar Wind and Scales of Outer Planetary Magnetospheres

75	Jupiter	Saturn	Uranus	Neptune	Pluto
Distance, aplanet (A.U.) a	5.2	9.5	19	30	30-50
Solar Wind Density ^b (amu cm ⁻³)	0.3	0.1	0.02	0.008	0.008-0.003
Radius, Rplanet (km)	71,398	60,330	25,559	24,764	1,170 (±33)
Surface Magnetic Field B_O (Gauss = 10^4 T)	4.28	0.22	0.23	0.14	?
RMP ^C (planetary radii)	42 RJ	19 RS	25 RU	$24R_{ m N}$	
Observed Size of	50-100RJ	16-22R _S	18 RU	23-26 R _N	
Magnetosphere (km)	7 x 10 ⁶	1 x 10 ⁶	5 x 10 ⁵	6 x 10 ⁵	

a. 1 A.U. = $1.5 \times 10^8 \text{km}$

b. Solar wind density fluctuates by ~5 about typical values of $\rho sw \sim [(8 \text{ amu cm}^{-3})/a^2 \text{ planet }]$

c. ^{R}MP is calculated using $^{R}MP = (Bo^{2}/2\mu_{o}\rho u^{2})^{1/6}$ with of ρ_{sw} given above and $u\sim400 \mathrm{km \ s^{-1}}$.