

Low-Energy Plasma Populations in Saturn's Inner Magnetosphere and Rings

D.T. YOUNG¹, F. J. CRARY¹, M. BOUHRAM², J.L. BURCH¹, A.J. COATES³, T.W. HILL⁴, R.E. JOHNSON⁵, R. BARAGIOLA⁵, H. MCANDREWS³, D. REISENFELD⁶, A. RYMER³, E.C. SITTLER⁷, H.T. SMITH⁵, K. SZEGO⁸, M.F. THOMSEN⁹, R.L. TOKAR⁹, Z. BEBESI⁸, N. ANDRE¹⁰, A. EVIATAR¹¹ and R. E. HARTLE⁷

¹Southwest Research Institute, 6220 Culebra Dr., San Antonio, TX 78212

²Centre d'étude des Environnements Terrestre et Planetaires, CNRS, St. Maur, France

³Mullard Space Science Laboratory, University College London, Surrey, England

⁴Rice University, Houston, TX 77251

⁵University of Virginia, Charlottesville, VA 22904

⁶The University of Montana, Missoula, MT 59812

⁷Goddard Space Flight Center, Greenbelt

⁸KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, Hungary

⁹Los Alamos National Laboratory, Los Alamos, NM 87545

¹⁰Centre d'Etude Spatiale des Rayonnements, Toulouse, 31400, France

¹¹Tel Aviv University, Ramat Aviv, Tel Aviv, 40295, Israel

During the initial Cassini insertion orbit, the Cassini Plasma Spectrometer (CAPS) made observations of the suprathermal (< 1 keV) and thermal (down to ~1 eV) plasma environments of Saturn's inner magnetosphere and rings. Measurements of suprathermal N ions from L ~ 9 down to 3.5 are indicative of the existence of a local icy satellite or E-ring source of a nitrogen-bearing compound such as NH₃. It is less likely that the ions are formed from neutrals transported inward from Titan, while ions created near Titan's orbit can be ruled out. In addition to nitrogen, water group ions including H_3O^+ are observed over the same broad range of energies and radial distances. During Cassini's closest approach to Saturn we observed O_2^+ and O^+ ions over the A and B rings. Analysis shows that these data are consistent with an O_2 atmosphere produced by photolysis of water ice in the rings.

Keywords: Saturn, magnetosphere, ion composition, rings