

Aerosol Production Over a Tropical Mangrove Forest

A.CHATTERJEE¹, C. DUTTA¹, S.SEN¹ and T. K. DE² and T. K. JANA² ¹Department of Chemistry, Calcutta University ²Department of Marine Science, Calcutta University

The mass loading of sea-salt aerosol in the land-ocean boundary at Sundarban mangrove, NE coast of Bay of Bengal $(20^{\circ}32' - 20^{\circ}40')$ and $88^{\circ}05' - 89^{\circ}E$ is studied during dry season between November 2003 and June 2004 before the onset of SW monsoon using a nine-stage cascade impactor. Aerosol concentration is found to be in the range 128.2-148.9 μ g m⁻³ with production rate of 0.8 to 4.0 μ g m⁻²s⁻¹ and deposition rate of 0.26 to 0.28 μ g m⁻²s⁻¹. White caps are observable within the upwind distance of 50m when the wind velocity at 10m heights is in the range 0.63 to 2.69 ms⁻¹. The nucleation and accumulation particle modes $<2\mu$ m constitute 27.9% to 32.2% of total aerosol mass. During NE monsoon, the size distribution of Na⁺ and Cl⁻ show maxima in the coarse mode while NO_3^{-1} , NH_4^{+1} and SO_4^{-2-1} have maxima in the accumulation mode. Before onset of SW monsoon, the size distribution of Cl⁻ shows two more maxima in the nucleation and accumulation modes. Size distribution of NO3- shows three distinct peaks in all three size modes while that of SO42- is found to be maximum only in coarse mode. Considering the total area of surf zone from receptor point to the upwind edge of the sea source as $7x10^5m^2$, net flux of sea-salt aerosol is calculated as 32.4 kg d⁻¹ in post monsoon and 225.1 kg d⁻¹ in pre-monsoon. Na⁺ is the dominant cation species and Cl/Na is 0.4259±0.1734 with average chloride depletion of 75.8% during post monsoon. Cl/Na ratio is further decreased to 0.4130 ± 0.1258 during pre-monsoon with chloride depletion of 77.2%. Maximum non-sea-salt sulfate is found to occur in the accumulation particle mode and about three fold increase of its concentration is found to occur in pre-monsoon. NO₃⁻ is the predominant form of inorganic nitrogen. NH₄⁺ concentration is about fourteen times higher in post monsoon compared to that in pre-monsoon. Results show that there is a considerable loss of NO_3^- by photochemical decomposition, which is calculated considering depleted Cl⁻ and excess non-sea-salt sulfate.

Keywords: Aerosol size distribution; mangrove forest; sea-salt composition

References

- [1] H. Zhuang, C. K. Chan, M. Fang and A. S. Wexler, Atm. Env. 33, 4223 (1999).
- [2] H. M. Ten Brink, J. Aerosol Science, 29, 57 (1998).
- [3] M. A. Yamasoe, P. Artaxo, A.H.Miguel and A.G.Allen, Atm. Env.34, 1641(2000).
- [4] S.K.Satheesh and K.K.Moorty, Tellus, 49B, 417(1997).