Radiocarbon in the Northern Indian Ocean

RAVI BHUSHAN¹ and KOUSHIK DUTTA² ¹Physical Research Laboratory, Ahmedabad 380009, India, ²University of Minnesota, Duluth, MN 55812, USA

The natural distribution of radiocarbon has been perturbed by nuclear weapon testing in the late fifties and early sixties which resulted in the injection of considerable amount of ¹⁴C in the environment. This bomb ¹⁴C has provided an additional tool to assess more precisely the time scales of various processes associated with carbon exchange among the various Earth surface reservoirs. Radiocarbon measurements were made in the northern Indian Ocean to determine air-sea exchange rate of CO₂, circulation time scales in the Arabian Sea and Bay of Bengal and ¹⁴C reservoir ages.

The estimated ΔR correction values for the northern Arabian Sea is 163 ± 30 yr, 11 ± 35 yr for the eastern Bay of Bengal (Andaman Sea) and 32 ± 20 yr for the southern Bay of Bengal. (Dutta et al., 2001). 1-D vertical advection-diffusion model calculations using ¹⁴C measurements indicate that there is very rapid (w>>200 m/yr) vertical mixing in the deep waters (>1500m) of the Andaman basin consistent with the distribution of chemical and physical properties (Dutta et al., 2007). Based on the average ¹⁴C derived CO₂ exchange rates as determined from the bomb produced ¹⁴C inventories and reported annual surface seawater pCO₂ values, the net flux of CO₂ from the Indian Ocean during late 1990s has been estimated to be ~164TgC.yr⁻¹ (Bhushan et al., 2000). The Bay of Bengal acts as sink of CO₂ with net uptake rate of atmospheric CO₂ by the entire basin has been estimated to ~9TgC.yr⁻¹.

Keywords; Northern Indian Ocean, Bomb Radiocarbon, ΔR Correction Value, Air-sea CO_2 Exchange Rates

References

- R. Bhushan, B.L.K. Somayajulu, S. Chakraborty and S. Krishnaswami, J. Geophys. Res. 105 (C6), 14273 (2000).
- [2] K.Dutta, Ravi Bhushan and B.L.K. Somayajulu, Radiocarbon.43, 483 (2001).
- [3] K.Dutta, Ravi Bhushan and B.L.K. Somayajulu, Sci. Tot. Env. 384, 401 (2007).