Spitzer Observations of Dust from 67P/Churyumov-Gerasimenko

JESSICA AGARWAL^{1,*}, EBERHARD GRUEN^{2,3}, RENE LAUREIJS¹, WILLIAM T. REACH⁴, JOHN A. STANSBERRY⁵, MARK V. SYKES⁶ ¹ESA/ESTEC, Noordwijk, The Netherlands ²MPI for Nuclear Physics, Heidelberg, Germany ³LASP, Boulder, U.S.A. ⁴IPAC/Caltech, Pasadena, U.S.A. ⁵Steward Observatory, Tucson, U.S.A. ⁶Planetary Science Institute, Tucson, U.S.A. *Phone: +31 71 565 4928, email: jagarwal@rssd.esa.int

We present Spitzer/MIPS observations of the coma and dust trail of the Rosetta target comet 67P/Churyumov-Gerasimenko in November 2008, when the comet was at a heliocentric distance of 1.7 AU in-bound. Our observations covered the comet nucleus, coma, and sections of the dust trail, at 24 and 70 μ m. We derive the colour temperature of dust in the coma, and a lower limit for the colour temperature of the trail dust, which was not detected at 70 μ m. We discuss the implications of the 70 μ m non-detection for the properties of the trail dust: either the elevated colour temperature may be due to grains large enough to support a temperature gradient across their surfaces, or the emissivity decreases with wavelength. Such an emissivity effect could be explained by the predominance of small (< 100 μ m) grains in the dust trail that would have to be recently-produced by fragmentation of larger particles. From modelling of the trail at 24 μ m, we constrain the dust size distribution, emission speeds, and production rates during the past apparition of the comet.